Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; 70(1): 105-114, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759593

RESUMEN

OBJECTIVE: We developed a hybrid volume surface integral equation (VSIE) method based on domain decomposition to perform fast and accurate magnetic resonance imaging (MRI) simulations that include both remote and local conductive elements. METHODS: We separated the conductive surfaces present in MRI setups into two domains and optimized electromagnetic (EM) modeling for each case. Specifically, interactions between the body and EM waves originating from local radiofrequency (RF) coils were modeled with the precorrected fast Fourier transform, whereas the interactions with remote conductive surfaces (RF shield, scanner bore) were modeled with a novel cross tensor train-based algorithm. We compared the hybrid-VSIE with other VSIE methods for realistic MRI simulation setups. RESULTS: The hybrid-VSIE was the only practical method for simulation using 1 mm voxel isotropic resolution (VIR). For 2 mm VIR, our method could be solved at least 23 times faster and required 760 times lower memory than traditional VSIE methods. CONCLUSION: The hybrid-VSIE demonstrated a marked improvement in terms of convergence times of the numerical EM simulation compared to traditional approaches in multiple realistic MRI scenarios. SIGNIFICANCE: The efficiency of the novel hybrid-VSIE method could enable rapid simulations of complex and comprehensive MRI setups.


Asunto(s)
Radiación Electromagnética , Ondas de Radio , Simulación por Computador , Algoritmos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Campos Electromagnéticos
2.
IEEE Trans Antennas Propag ; 70(1): 459-471, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35110782

RESUMEN

In this work, we propose a method for the compression of the coupling matrix in volume-surface integral equation (VSIE) formulations. VSIE methods are used for electromagnetic analysis in magnetic resonance imaging (MRI) applications, for which the coupling matrix models the interactions between the coil and the body. We showed that these effects can be represented as independent interactions between remote elements in 3D tensor formats, and subsequently decomposed with the Tucker model. Our method can work in tandem with the adaptive cross approximation technique to provide fast solutions of VSIE problems. We demonstrated that our compression approaches can enable the use of VSIE matrices of prohibitive memory requirements, by allowing the effective use of modern graphical processing units (GPUs) to accelerate the arising matrix-vector products. This is critical to enable numerical MRI simulations at clinical voxel resolutions in a feasible computation time. In this paper, we demonstrate that the VSIE matrix-vector products needed to calculate the electromagnetic field produced by an MRI coil inside a numerical body model with 1 mm3 voxel resolution, could be performed in ~ 33 seconds in a GPU, after compressing the associated coupling matrix from ~ 80 TB to ~ 43 MB.

3.
IEEE Trans Biomed Eng ; 68(1): 236-246, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32365014

RESUMEN

OBJECTIVE: Global Maxwell Tomography (GMT) is a recently introduced volumetric technique for noninvasive estimation of electrical properties (EP) from magnetic resonance measurements. Previous work evaluated GMT using ideal radiofrequency (RF) excitations. The aim of this simulation study was to assess GMT performance with a realistic RF coil. METHODS: We designed a transmit-receive RF coil with 8 decoupled channels for 7T head imaging. We calculated the RF transmit field ( B1+) inside heterogeneous head models for different RF shimming approaches, and used them as input for GMT to reconstruct EP for all voxels. RESULTS: Coil tuning/decoupling remained relatively stable when the coil was loaded with different head models. Mean error in EP estimation changed from [Formula: see text] to [Formula: see text] and from [Formula: see text] to [Formula: see text] for relative permittivity and conductivity, respectively, when changing head model without re-tuning the coil. Results slightly improved when an SVD-based RF shimming algorithm was applied, in place of excitation with one coil at a time. Despite errors in EP, RF transmit field ( B1+) and absorbed power could be predicted with less than [Formula: see text] error over the entire head. GMT could accurately detect a numerically inserted tumor. CONCLUSION: This work demonstrates that GMT can reliably reconstruct EP in realistic simulated scenarios using a tailored 8-channel RF coil design at 7T. Future work will focus on construction of the coil and optimization of GMT's robustness to noise, to enable in-vivo GMT experiments. SIGNIFICANCE: GMT could provide accurate estimations of tissue EP, which could be used as biomarkers and could enable patient-specific estimation of RF power deposition, which is an unsolved problem for ultra-high-field magnetic resonance imaging.


Asunto(s)
Espectroscopía de Resonancia Magnética , Tomografía , Diseño de Equipo , Humanos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Ondas de Radio
4.
IEEE Trans Biomed Eng ; 67(1): 3-15, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30908189

RESUMEN

OBJECTIVE: In this paper, we introduce global Maxwell tomography (GMT), a novel volumetric technique that estimates electric conductivity and permittivity by solving an inverse scattering problem based on magnetic resonance measurements. METHODS: GMT relies on a fast volume integral equation solver, MARIE, for the forward path, and a novel regularization method, match regularization, designed specifically for electrical property estimation from noisy measurements. We performed simulations with three different tissue-mimicking numerical phantoms of different complexity, using synthetic transmit sensitivity maps with realistic noise levels as the measurements. We performed an experiment at 7 T using an eight-channel coil and a uniform phantom. RESULTS: We showed that GMT could estimate relative permittivity and conductivity from noisy magnetic resonance measurements with an average error as low as 0.3% and 0.2%, respectively, over the entire volume of the numerical phantom. Voxel resolution did not affect GMT performance and is currently limited only by the memory of the graphics processing unit. In the experiment, GMT could estimate electrical properties within 5% of the values measured with a dielectric probe. CONCLUSION: This work demonstrated the feasibility of GMT with match regularization, suggesting that it could be effective for accurate in vivo electrical property estimation. GMT does not rely on any symmetry assumption for the electromagnetic field, and can be generalized to estimate also the spin magnetization, at the expense of increased computational complexity. SIGNIFICANCE: GMT could provide insight into the distribution of electromagnetic fields inside the body, which represents one of the key ongoing challenges for various diagnostic and therapeutic applications.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Tomografía/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Conductividad Eléctrica , Campos Electromagnéticos , Cabeza/diagnóstico por imagen , Humanos , Fantasmas de Imagen , Dispersión de Radiación , Torso/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...